Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1

Transgenic potato (Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene (SnRK1) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%-167...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2006-07, Vol.4 (4), p.409-418
Hauptverfasser: McKibbin, Rowan S, Muttucumaru, Nira, Paul, Matthew J, Powers, Stephen J, Burrell, Michael M, Coates, Steve, Purcell, Patrick C, Tiessen, Axel, Geigenberger, Peter, Halford, Nigel G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transgenic potato (Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene (SnRK1) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%-167% compared with that in the wild-type. Glucose levels were decreased, at 17%-56% of the levels of the wild-type, and the starch content showed an increase of 23%-30%. Sucrose and fructose levels in the tubers of the transgenic plants did not show a significant change. Northern analyses of genes encoding sucrose synthase and ADP-glucose pyrophosphorylase, two key enzymes involved in the biosynthetic pathway from sucrose to starch, showed that the expression of both was increased in tubers of the transgenic lines compared with the wild-type. In contrast, the expression of genes encoding two other enzymes of carbohydrate metabolism, α-amylase and sucrose phosphate synthase, showed no change. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was also increased, by approximately 20%-60% and three- to five-fold, respectively, whereas the activity of hexokinase was unchanged. The results are consistent with a role for SnRK1 in regulating carbon flux through the storage pathway to starch biosynthesis. They emphasize the importance of SnRK1 in the regulation of carbohydrate metabolism and resource partitioning, and indicate a specific role for SnRK1 in the control of starch accumulation in potato tubers.
ISSN:1467-7644
1467-7652
DOI:10.1111/j.1467-7652.2006.00190.x