Effects of Pressurization on Structure, Water Distribution, and Sensory Attributes of Cured Ham:  Can Pressurization Reduce the Crucial Sodium Content?

This study investigated the replacement of tumbling (intermittent vacuum tumbling for 6 h) with pressure treatment (7 MPa for 4 s) in the production of a cured ham product with the aim of elucidating if the pressure treatment could reduce the amount of salt added to obtain a satisfactory product. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2006-12, Vol.54 (26), p.9912-9917
Hauptverfasser: Bertram, Hanne Christine, Wu, Zhiyun, Straadt, Ida K, Aagaard, Michael, Aaslyng, Margit Dall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the replacement of tumbling (intermittent vacuum tumbling for 6 h) with pressure treatment (7 MPa for 4 s) in the production of a cured ham product with the aim of elucidating if the pressure treatment could reduce the amount of salt added to obtain a satisfactory product. Confocal laser scanning microscopy (CLSM) revealed a pressure-induced loosening of the meat structure, and proton nuclear magnetic resonance (NMR) relaxometry revealed that this structural modification of the meat had an impact on water properties and water distribution in both cooked and cooked/fried products. Three salt levels (0.6, 1.1, and 1.7% w/w) were investigated, and sensory profiling revealed that the pressured-cooked meat obtained a significantly higher juiciness score at low and medium salt levels. In addition, sensory profiling assessments revealed that at the lowest salt concentration the pressured product was perceived to be saltier compared with the tumbled product; however, the difference was not significant and was absent upon frying. In contrast, in sensory time intensity analysis the maximum intensity and the total salt taste were significantly higher in the pressured samples at the low and medium salt levels in the cooked samples. In conclusion, the present study showed strong evidence that the structure and biophysical characteristics of cured ham is altered by pressurization and suggested that pressurization may reduce the critical amount of salt required in a ham product. Keywords: NMR; T 2 relaxation; CLSM; confocal microscopy; meat quality; pressure treatment; high pressure; pork; salt; curing; tumbling
ISSN:0021-8561
1520-5118
DOI:10.1021/jf061966i