The tumor metastasis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer

The tumor metastasis suppressor gene Drg-1 has been shown to suppress metastasis without affecting tumorigenicity in immunodeficient mouse models of prostate and colon cancer. Expression of Drg-1 has also been found to have a significant inverse correlation with metastasis or invasiveness in various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2006-12, Vol.66 (24), p.11983-11990
Hauptverfasser: BANDYOPADHYAY, Sucharita, YING WANG, HOSOBE, Sadahiro, TSUKADA, Taisei, MIURA, Kunio, TAKANO, Yukio, SAITO, Ken, COMMES, Therese, PIQUEMAL, David, HAI, Tsonwin, WATABE, Kounosuke, RUI ZHAN, PAI, Sudha K, WATABE, Misako, IIIZUMI, Megumi, FURUTA, Eiji, MOHINTA, Sonia, WEN LIU, HIROTA, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumor metastasis suppressor gene Drg-1 has been shown to suppress metastasis without affecting tumorigenicity in immunodeficient mouse models of prostate and colon cancer. Expression of Drg-1 has also been found to have a significant inverse correlation with metastasis or invasiveness in various types of human cancer. However, how Drg-1 exerts its metastasis suppressor function remains unknown. In the present study, to elucidate the mechanism of action of the Drg-1 gene, we did a microarray analysis and found that induction of Drg-1 significantly inhibited the expression of activating transcription factor (ATF) 3, a member of the ATF/cyclic AMP-responsive element binding protein family of transcription factors. We also showed that Drg-1 attenuated the endogenous level of ATF3 mRNA and protein in prostate cancer cells, whereas Drg-1 small interfering RNA up-regulated the ATF3 expression. Furthermore, Drg-1 suppressed the promoter activity of the ATF3 gene, indicating that Drg-1 regulates ATF3 expression at the transcriptional level. Our immunohistochemical analysis on prostate cancer specimens revealed that nuclear expression of ATF3 was inversely correlated to Drg-1 expression and positively correlated to metastases. Consistently, we have found that ATF3 overexpression promoted invasiveness of prostate tumor cells in vitro, whereas Drg-1 suppressed the invasive ability of these cells. More importantly, overexpression of ATF3 in prostate cancer cells significantly enhanced spontaneous lung metastasis of these cells without affecting primary tumorigenicity in a severe combined immunodeficient mouse model. Taken together, our results strongly suggest that Drg-1 suppresses metastasis of prostate tumor cells, at least in part, by inhibiting the invasive ability of the cells via down-regulation of the expression of the ATF3 gene.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-06-0943