Genomic Profiling of Kidney Ischemia-Reperfusion Reveals Expression of Specific Alloimmunity-Associated Genes: Linking “Immune” and “Nonimmune” Injury Events
Increased organ ischemia time leads to delayed graft function (DGF), increased acute rejection (AR), enhanced chronic allograft nephropathy (CAN), and reduced long-term allograft survival. The mechanisms by which IRI predisposes to AR and CAN are unknown. We hypothesized that gene expression profili...
Gespeichert in:
Veröffentlicht in: | Transplantation proceedings 2006-12, Vol.38 (10), p.3333-3336 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increased organ ischemia time leads to delayed graft function (DGF), increased acute rejection (AR), enhanced chronic allograft nephropathy (CAN), and reduced long-term allograft survival. The mechanisms by which IRI predisposes to AR and CAN are unknown. We hypothesized that gene expression profiling of ischemia-reperfusion injury (IRI)-affected kidney would identify how IRI predisposes to AR and CAN. Furthermore, we examined how current immunosuppressive drug molecular targets are altered by IRI. C57BL/6J mice were exposed to 30 (
n = 3) or 60 (
n = 3) minutes of bilateral kidney ischemia or sham surgery (
n = 5). At 36 hour kidney tissue was collected and analyzed using Affymetrix 430MOEA (22626 genes) array and GC-RMA-SAM pipeline. Genes with the false discovery rate (q < 1%) and ±50% fold change (FC) were considered affected by IRI. Genes coding for histocompatibility and antigen-presenting factors, calcineurin, and mammalian target of rapamycin (mTOR) pathway-associated proteins were selected using Gene Ontology (GO) analysis. GO analysis identified 10 and 17 alloimmunity-related genes affected by IRI induced by 30 and 60 minutes of ischemia, respectively, including
Traf6 (FC = 2.99) and
H2-D1 (FC = 2.58). We also detected significant IRI genomic responses in calcineurin and mTOR pathways represented by
Fkbp5 (FC = 4.18) and
Fkbp1a (FC = 2.0), and
Eif4ebp1 (FC = 16.8) and
Akt1 (FC = 3.64), respectively. These data demonstrated that IRI up-regulates expression of several alloimmunity-associated genes, which can in turn enhance alloimune responses. Our discovery of IRI-induced up-regulation of genes associated with calcineurin and mTOR pathways are consistent with clinical observations that FK506 and Rapamycin can alter the course of DGF. Further validation and dissection of these pathways can lead to novel approaches by which improved management of early “nonimmune” transplant events can decrease susceptibility to more classic “immune” changes and CAN. |
---|---|
ISSN: | 0041-1345 1873-2623 |
DOI: | 10.1016/j.transproceed.2006.10.129 |