Spectroscopic and Ab Initio Characterization of the [ReH9]2- Ion
The dynamics and bonding of the hydrido complex Ba[ReH9], containing the D 3 h face-capped trigonal prismatic [ReH9]2- ion, have been investigated by vibrational spectroscopy and density functional theory (DFT). The combination of infrared, Raman, and inelastic neutron-scattering (INS) spectroscopie...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2006-12, Vol.45 (26), p.10951-10957 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamics and bonding of the hydrido complex Ba[ReH9], containing the D 3 h face-capped trigonal prismatic [ReH9]2- ion, have been investigated by vibrational spectroscopy and density functional theory (DFT). The combination of infrared, Raman, and inelastic neutron-scattering (INS) spectroscopies has enabled observation of all the modes of the [ReH9]2- ion for the first time. We demonstrate that calculations of the isolated [ReH9]2- ion are unable to reproduce the INS spectrum and that the complete unit cell must be considered with periodic DFT to have reliable results. This is shown to be a consequence of the long-range Coulomb potential present. Analysis of the electronic structure shows that the bonding between the rhenium and the hydrogen is largely covalent. There is a small degree of covalency between the prism hydrides and the barium. The counterion is crucial to the stability of the materials; hence, variation of it potentially offers a method to fine-tune the properties of the material. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/ic0611894 |