Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens

Leaves of eucalypt species contain a variety of plant secondary metabolites, including terpenoids and formylated phloroglucinol compounds (FPCs). Both terpene and FPC concentrations are quantitative traits that can show large variation within a population and have been shown to be heritable. The mol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2007-01, Vol.176 (1), p.82-95
Hauptverfasser: Henery, Martin L, Moran, Gavin F, Wallis, Ian R, Foley, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leaves of eucalypt species contain a variety of plant secondary metabolites, including terpenoids and formylated phloroglucinol compounds (FPCs). Both terpene and FPC concentrations are quantitative traits that can show large variation within a population and have been shown to be heritable. The molecular genetic basis of this variation is currently unknown. Progeny from a field trial of a three-generation mapping pedigree of Eucalyptus nitens were assayed for terpenes and FPCs. Quantitative trait loci (QTL) analyses were conducted using a map constructed from 296 markers to locate regions of the genome influencing foliar concentrations of these plant secondary compounds. A large number of significant QTL for 14 traits were located across nine linkage groups, with significant clustering of QTL on linkage groups 7, 8 and 9. As expected, QTL for biosynthetically related compounds commonly colocated, but QTL for unrelated monterpenes and FPCs also mapped closely together. Colocation of these QTL with mapped candidate genes from the various biosynthetic pathways, and subsequent use of these genes in association mapping, will assist in determining the causes of variation in plant secondary metabolites in eucalypts.
ISSN:0028-646X
1469-8137
DOI:10.1111/j.1469-8137.2007.02159.x