Domain formation and orbital ordering transition in a doped Jahn-Teller insulator

The ground state of a double-exchange model for orbitally degenerate e(g) electrons with Jahn-Teller lattice coupling and weak disorder is found to be spatially inhomogeneous near half filling. Using a real-space Monte Carlo method we show that doping the half-filled orbitally ordered insulator lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-10, Vol.97 (17), p.176403-176403, Article 176403
Hauptverfasser: Kumar, Sanjeev, Kampf, Arno P, Majumdar, Pinaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ground state of a double-exchange model for orbitally degenerate e(g) electrons with Jahn-Teller lattice coupling and weak disorder is found to be spatially inhomogeneous near half filling. Using a real-space Monte Carlo method we show that doping the half-filled orbitally ordered insulator leads to the appearance of hole-rich disordered regions in an orbitally ordered environment. The doping driven orbital order to disorder transition is accompanied by the emergence of metallic behavior. We present results on transport and optical properties along with spatial patterns for lattice distortions and charge densities, providing a basis for an overall understanding of the low-doping phase diagram of La1 - xCaxMnO3.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.97.176403