Dendritic Cell Type Determines the Mechanism of Bystander Suppression by Adaptive T Regulatory Cells Specific for the Minor Antigen HA-1
One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (TR) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplan...
Gespeichert in:
Veröffentlicht in: | Journal of Immunology 2007-09, Vol.179 (6), p.3443-3451 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (TR) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplants as responders in the trans vivo-delayed type hypersensitivity assay, we found that dendritic cells (DC), but not monocyte APCs, could mediate bystander suppression of EBV-specific recall response. When HA-1(H) peptide was added to mixtures of plasmacytoid DC (pDC) and T cells, bystander suppression of the response to a colocalized recall Ag occurred primarily via indolamine-2,3-dioxygenase (IDO) production. Similarly, addition of HA-1(H) peptide to cocultures of T cells and pDC, but not myeloid DC (mDC), induced IDO activity in vitro. When mDC presented HA-1(H) peptide to Ag-specific CD8+ TR, cytokine release (TGF-beta, IL-10, or both) was the primary mode of bystander suppression. Bystander suppression via mDC was reversed not only by Ab to TGF-beta and its receptor on T cells, but also by Ab to thrombospondin-1. EBV addition did not induce IDO or thrombospondin-1 in T-DC cocultures, suggesting that these DC products are not induced by T effector cells, but only by TR cells. These results shed light upon the mechanism of bystander suppression by donor Ag-specific TR in patients with organ transplant tolerance and underscores the distinct and critical roles of mDC and pDCs in this phenomenon. |
---|---|
ISSN: | 0022-1767 1550-6606 1365-2567 |
DOI: | 10.4049/jimmunol.179.6.3443 |