Regularized learning framework in the estimation of reflectance spectra from camera responses
For digital cameras, device-dependent pixel values describe the camera's response to the incoming spectrum of light. We convert device-dependent RGB values to device- and illuminant-independent reflectance spectra. Simple regularization methods with widely used polynomial modeling provide an ef...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007-09, Vol.24 (9), p.2673-2683 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For digital cameras, device-dependent pixel values describe the camera's response to the incoming spectrum of light. We convert device-dependent RGB values to device- and illuminant-independent reflectance spectra. Simple regularization methods with widely used polynomial modeling provide an efficient approach for this conversion. We also introduce a more general framework for spectral estimation: regularized least-squares regression in reproducing kernel Hilbert spaces (RKHS). Obtained results show that the regularization framework provides an efficient approach for enhancing the generalization properties of the models. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/josaa.24.002673 |