Regularized learning framework in the estimation of reflectance spectra from camera responses

For digital cameras, device-dependent pixel values describe the camera's response to the incoming spectrum of light. We convert device-dependent RGB values to device- and illuminant-independent reflectance spectra. Simple regularization methods with widely used polynomial modeling provide an ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007-09, Vol.24 (9), p.2673-2683
Hauptverfasser: HEIKKINEN, Ville, JETSU, Tuija, PARKKINEN, Jussi, HAUTA-KASARI, Markku, JAASKELAINEN, Timo, SEONG DEOK LEE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For digital cameras, device-dependent pixel values describe the camera's response to the incoming spectrum of light. We convert device-dependent RGB values to device- and illuminant-independent reflectance spectra. Simple regularization methods with widely used polynomial modeling provide an efficient approach for this conversion. We also introduce a more general framework for spectral estimation: regularized least-squares regression in reproducing kernel Hilbert spaces (RKHS). Obtained results show that the regularization framework provides an efficient approach for enhancing the generalization properties of the models.
ISSN:1084-7529
1520-8532
DOI:10.1364/josaa.24.002673