Frequentist model-averaged estimators and tests for univariate twin models

Parameter estimates from analyses of univariate twin data usually do not reflect the uncertainty due to the model selection phase of the data analysis. To address the effect of model selection uncertainty on parameter estimates, we introduce frequentist model-averaged estimators for univariate twin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior genetics 2006-09, Vol.36 (5), p.687-696
Hauptverfasser: Williams, Christopher J, Christian, Joe C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parameter estimates from analyses of univariate twin data usually do not reflect the uncertainty due to the model selection phase of the data analysis. To address the effect of model selection uncertainty on parameter estimates, we introduce frequentist model-averaged estimators for univariate twin data analysis that use information-theoretic criteria to assign model weights. We conduct simulation studies to examine the performance of model-averaged estimators of additive genetic variance, and for tests for additive genetic variance based on model-averaged estimators. In simulation studies with small or moderate sample sizes, model-averaged estimators of additive genetic variance typically have lower mean-squared error than either (i) estimators from individual twin models, or (ii) estimators obtained from a decision procedure where the best-fitting model from likelihood-ratio testing is used to estimate additive genetic variance. For each sample size simulated, bootstrap tests based on model-averaged estimators have higher power to detect additive genetic variance than currently-used tests in most cases.
ISSN:0001-8244
1573-3297
DOI:10.1007/s10519-006-9065-8