Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces

We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (11...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2006-11, Vol.125 (20), p.204704-204704
Hauptverfasser: Kumar, Santosh, Schelling, Patrick K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2400034