Dasatinib (BMS-354825) Pharmacokinetics and Pharmacodynamic Biomarkers in Animal Models Predict Optimal Clinical Exposure

Purpose: Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence sugge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2006-12, Vol.12 (23), p.7180-7186
Hauptverfasser: LUO, Feng R, ZHENG YANG, WEN, Mei-Li, KRAMER, Robert, BLACKWOOD-CHIRCHIR, Anne, LEE, Francis Y, CAMUSO, Amy, SMYKLA, Richard, MCGLINCHEY, Kelly, FAGER, Krista, FLEFLEH, Christine, CASTANEDA, Stephen, INIGO, Ivan, KAN, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence suggests that drug resistance to imatinib may limit its long-term success. To improve treatment options, dasatinib (BMS-354825) was developed as a novel, oral, multi-targeted kinase inhibitor of BCR-ABL and SRC family kinases. To date, dasatinib has shown promising anti-leukemic activity in preclinical models of CML and in phase I/II clinical studies in patients with imatinib-resistant or imatinib-intolerant disease. Experimental Design: The pharmacokinetic and pharmacodynamic biomarkers of dasatinib were investigated in K562 human CML xenografts grown s.c. in severe combined immunodeficient mice. Tumoral levels of phospho-BCR-ABL/phospho-CrkL were determined by Western blot. Results: Following a single oral administration of dasatinib at a preclinical efficacious dose of 1.25 or 2.5 mg/kg, tumoral phospho-BCR-ABL/phospho-CrkL were maximally inhibited at ∼3 hours and recovered to basal levels by 24 hours. The time course and extent of the inhibition correlated with the plasma levels of dasatinib in mice. Pharmacokinetic/biomarker modeling predicted that the plasma concentration of dasatinib required to inhibit 90% of phospho-BCR-ABL in vivo was 10.9 ng/mL in mice and 14.6 ng/mL in humans, which is within the range of concentrations achieved in CML patients who responded to dasatinib treatment in the clinic. Conclusions: Phospho-BCR-ABL/phospho-CrkL are likely to be useful clinical biomarkers for the assessment of BCR-ABL kinase inhibition by dasatinib.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-06-1112