ACTH receptor: ectopic expression, activity and signaling

Failure in obtaining expression of functional adrenocorticotropic hormone receptor (ACTHR, or melanocortin 2 receptor, MC2R) in non-adrenal cells has hindered molecular analysis of ACTH signaling pathways. Here, we ectopically expressed the mouse ACTHR in Balb/c mouse 3T3 fibroblasts to analyze ACTH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2006-12, Vol.293 (1-2), p.147-160
Hauptverfasser: Forti, Fábio Luís, Dias, Matheus H S, Armelin, Hugo Aguirre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Failure in obtaining expression of functional adrenocorticotropic hormone receptor (ACTHR, or melanocortin 2 receptor, MC2R) in non-adrenal cells has hindered molecular analysis of ACTH signaling pathways. Here, we ectopically expressed the mouse ACTHR in Balb/c mouse 3T3 fibroblasts to analyze ACTH signaling pathways involved in induction of fos and jun genes. Natural constitutive expression of the MC2R accessory protein (MRAP) in Balb3T3 and other mouse 3T3 fibroblasts (NIH, Swiss and 3T3-L1) renders these fibroblastic lines suitable for ectopic expression of ACTHR in its active form properly inserted into the plasma membrane at levels similar to those found in mouse Y1 adrenocortical tumor cells. The Y1 cell line is a cultured cell system well known for stably displaying normal adrenal specific metabolic pathways, ACTHR expression and ACTH functional responses. Thirty-nine sub-lines expressing ACTHR (3T3-AR transfectants) were selected for geneticin-resistance and clonally isolated after transfection of ACTHR-cDNA (in the pSVK3 mammalian plasmidial vector) into Balb3T3 fibroblasts. In addition, sixteen clonal sub-lines of Balb3T3 (3T3-0 transfectants) carrying the pSVK3 empty vector were likewise isolated. Fourteen 3T3-AR and four 3T3-0 clones were screened for response to ACTH(39) in comparison with Y1 adrenocortical cells. Eight 3T3-AR clones responded to ACTH(39) with activation of adenylate cyclase and induction of c-Fos protein, but the levels of, respectively, activation and induction were not strictly correlated. Other fos and jun genes were also induced by ACTH(39) in 3T3-AR transfectants, which express levels of ACTHR protein similar to parental Y1 cells. Signaling pathways relevant to c-Fos induction was extensively investigated in 3 clones: 3T3-AR01 and -07 and 3T3-04. In Y1 cells, specific inhibitors (H89/PKA; PD98059/MEK; Go6983/PKC and SP600125/JNK) show that signals initiated in the ACTH/ACTHR-system activate 4 pathways to induce the c-fos gene, namely: (a) cAMP/PKA/CREB; (b) MEK/ERK1/2; (c) PKC and d) JNK1/2. In 3T3-AR transfectants, both inhibitors PD98059 and Go6983 proved completely ineffective to inhibit c-Fos induction by ACTH(39), implying that MEK/ERK and PKC pathways are not involved in this process. On the other hand, SP600125 caused 85% inhibition of c-Fos induction by ACTH(39) and, in addition, ACTH(39) promotes JNK1/2 phosphorylation, suggesting that JNK is a major signaling pathway mediating c-Fos induction by ACTH(39) in th
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-006-9237-0