The learning vector quantization algorithm applied to automatic text classification tasks

Automatic text classification is an important task for many natural language processing applications. This paper presents a neural approach to develop a text classifier based on the Learning Vector Quantization (LVQ) algorithm. The LVQ model is a classification method that uses a competitive supervi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2007-08, Vol.20 (6), p.748-756
Hauptverfasser: Martín-Valdivia, M.T., Ureña-López, L.A., García-Vega, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic text classification is an important task for many natural language processing applications. This paper presents a neural approach to develop a text classifier based on the Learning Vector Quantization (LVQ) algorithm. The LVQ model is a classification method that uses a competitive supervised learning algorithm. The proposed method has been applied to two specific tasks: text categorization and word sense disambiguation. Experiments were carried out using the Reuters-21578 text collection (for text categorization) and the Senseval-3 corpus (for word sense disambiguation). The results obtained are very promising and show that our neural approach based on the LVQ algorithm is an alternative to other classification systems.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2006.12.005