Is there a brainstem substrate for action selection?

The search for the neural substrate of vertebrate action selection has focused on structures in the forebrain and midbrain, and particularly on the group of sub-cortical nuclei known as the basal ganglia. Yet, the behavioural repertoire of decerebrate and neonatal animals suggests the existence of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2007-09, Vol.362 (1485), p.1627-1639
Hauptverfasser: Humphries, M.D, Gurney, K, Prescott, T.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The search for the neural substrate of vertebrate action selection has focused on structures in the forebrain and midbrain, and particularly on the group of sub-cortical nuclei known as the basal ganglia. Yet, the behavioural repertoire of decerebrate and neonatal animals suggests the existence of a relatively self-contained neural substrate for action selection in the brainstem. We propose that the medial reticular formation (mRF) is the substrate's main component and review evidence showing that the mRF's inputs, outputs and intrinsic organization are consistent with the requirements of an action-selection system. The internal architecture of the mRF is composed of interconnected neuron clusters. We present an anatomical model which suggests that the mRF's intrinsic circuitry constitutes a small-world network and extend this result to show that it may have evolved to reduce axonal wiring. Potential configurations of action representation within the internal circuitry of the mRF are then assessed by computational modelling. We present new results demonstrating that each cluster's output is most likely to represent activation of a component action; thus, coactivation of a set of these clusters would lead to the coordinated behavioural response observed in the animal. Finally, we consider the potential integration of the basal ganglia and mRF substrates for selection and suggest that they may collectively form a layered/hierarchical control system.
ISSN:0962-8436
1471-2970
DOI:10.1098/rstb.2007.2057