Logistic Model Tree Extraction From Artificial Neural Networks

Artificial neural networks (ANNs) are a powerful and widely used pattern recognition technique. However, they remain "black boxes" giving no explanation for the decisions they make. This paper presents a new algorithm for extracting a logistic model tree (LMT) from a neural network, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2007-08, Vol.37 (4), p.794-802
Hauptverfasser: Dancey, D., Bandar, Z.A., McLean, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial neural networks (ANNs) are a powerful and widely used pattern recognition technique. However, they remain "black boxes" giving no explanation for the decisions they make. This paper presents a new algorithm for extracting a logistic model tree (LMT) from a neural network, which gives a symbolic representation of the knowledge hidden within the ANN. Landwehr's LMTs are based on standard decision trees, but the terminal nodes are replaced with logistic regression functions. This paper reports the results of an empirical evaluation that compares the new decision tree extraction algorithm with Quinlan's C4.5 and ExTree. The evaluation used 12 standard benchmark datasets from the university of California, Irvine machine-learning repository. The results of this evaluation demonstrate that the new algorithm produces decision trees that have higher accuracy and higher fidelity than decision trees created by both C4.5 and ExTree.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2007.895334