Effect of the quinolone coccidiostat decoquinate on the rearrangement of chromosomes of Eimeria tenella

The present report concerns our attempts to further study the effect of quinolone coccidiostats on the sporulation of Eimeria tenella oocysts by analyzing the meiotic behaviour of the chromosomes. To that end, synaptonemal complexes were analyzed by TEM applied to intact meiotic chromosomes. These w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for parasitology 2006-12, Vol.36 (14), p.1515-1520
Hauptverfasser: Del Cacho, E., Gallego, M., Pages, M., Monteagudo, L., Sánchez-Acedo, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present report concerns our attempts to further study the effect of quinolone coccidiostats on the sporulation of Eimeria tenella oocysts by analyzing the meiotic behaviour of the chromosomes. To that end, synaptonemal complexes were analyzed by TEM applied to intact meiotic chromosomes. These were isolated after disruption of oocysts, which were harvested from decoquinate-medicated and non-medicated (control) birds. In oocysts from control birds, synaptonemal complexes appeared as the 14 bivalents of the normal karyotype. However, in oocysts from medicated birds, our synaptonemal complex analysis revealed a reciprocal translocation, which was observed as an irregular pairing of chromosome axes 5 and 12 resulting in quadrivalent and trivalent configurations. This finding suggests breakage points in chromosomes 5 and 12 and exchange of chromosomal segments. Furthermore, breakpoints in chromosome 12 resulted in telomere deletion. The chromosomal aberrations described in the present study may result in reduced sporulation since chromosomes involved in translocations segregate abnormally during meiosis. In addition, the results reported provide new evidence of the inhibitory effect of quinolones on the sporulation of E. tenella oocysts, since sporocysts were not formed.
ISSN:0020-7519
1879-0135
DOI:10.1016/j.ijpara.2006.08.004