C1‘-Cycloalkyl Side Chain Pharmacophore in Tetrahydrocannabinols

In earlier work we have provided evidence for the presence of a subsite within the CB1 and CB2 cannabinoid receptor binding domains of classical cannabinoids. This putative subsite corresponds to substituents on the C1‘-position of the C3-alkyl side chain, a key pharmacophoric feature in this class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2007-08, Vol.50 (17), p.4048-4060
Hauptverfasser: Papahatjis, Demetris P, Nahmias, Victoria R, Nikas, Spyros P, Andreou, Thanos, Alapafuja, Shakiru O, Tsotinis, Andrew, Guo, Jianxin, Fan, Pusheng, Makriyannis, Alexandros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In earlier work we have provided evidence for the presence of a subsite within the CB1 and CB2 cannabinoid receptor binding domains of classical cannabinoids. This putative subsite corresponds to substituents on the C1‘-position of the C3-alkyl side chain, a key pharmacophoric feature in this class of compounds. We have now refined this work through the synthesis of additional C1‘-cycloalkyl compounds using newly developed approaches. Our findings indicate that the C1‘-cyclopropyl and C1‘-cyclopentyl groups are optimal pharmacophores for both receptors while the C1‘-cyclobutyl group interacts optimally with CB1 but not with CB2. The C1‘-cyclohexyl analogs have reduced affinities for both CB1 and CB2. However, these affinities are significantly improved with the introduction of a C2‘−C3‘ cis double bond that modifies the available conformational space within the side chain and allows for a better accommodation of a six-membered ring within the side chain subsite. Our SAR results are highlighted by molecular modeling of key analogs.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm070121a