Effect of contact pressure on wear and friction of ultra-high molecular weight polyethylene in multidirectional sliding
Abstract Computational wear models need input data from valid tribological tests. For the wear model of a total hip prosthesis, the contact pressure dependence of wear and friction of ultra-high molecular weight polyethylene (UHMWPE) against polished CoCr in diluted calf serum lubricant was studied,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2006-10, Vol.220 (7), p.723-731 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Computational wear models need input data from valid tribological tests. For the wear model of a total hip prosthesis, the contact pressure dependence of wear and friction of ultra-high molecular weight polyethylene (UHMWPE) against polished CoCr in diluted calf serum lubricant was studied, and useful input data produced. Two test devices were designed and built: a heavy load circularly translating pin-on-disc (HL-CTPOD) wear test device and an HL-CTPOD friction measurement device. Both can be used with a wide range of loads. The wear surface diameter of the test pin was kept constant at 9 mm, whereas the load was varied so that the nominal contact pressure ranged from 0.1 to 20 MPa. The wear factor decreased with increasing contact pressure, whereas the coefficient of friction first increased with increasing contact pressure with low pressure values and then decreased. Up to the pressure of 2.0 MPa, the wear mechanisms and wear factors were in good agreement with clinical findings. In the critical range of 2.0-3.5 MPa, the wear mechanisms and wear factors started to differ from clinical ones, and the decrease of the wear factor steepened. The discrepancy became more and more evident as the pressure was gradually increased beyond 3.5 MPa. It appears that the pressure value of 2.0 MPa should not be exceeded in pin-on-disc wear tests that are to reproduce the clinical wear of UHMWPE acetabular cups. |
---|---|
ISSN: | 0954-4119 2041-3033 |
DOI: | 10.1243/09544119JEIM146 |