Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design

The post-translational modification of histones plays an important role in chromatin regulation, a process that insures the fidelity of gene expression and other DNA transactions. Of the enzymes that mediate post-translation modification, the histone acetyltransferase (HAT) and histone deacetylase (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2007-08, Vol.26 (37), p.5528-5540
Hauptverfasser: Hodawadekar, S C, Marmorstein, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The post-translational modification of histones plays an important role in chromatin regulation, a process that insures the fidelity of gene expression and other DNA transactions. Of the enzymes that mediate post-translation modification, the histone acetyltransferase (HAT) and histone deacetylase (HDAC) proteins that add and remove acetyl groups to and from target lysine residues within histones, respectively, have been the most extensively studied at both the functional and structural levels. Not surprisingly, the aberrant activity of several of these enzymes have been implicated in human diseases such as cancer and metabolic disorders, thus making them important drug targets. Significant mechanistic insights into the function of HATs and HDACs have come from the X-ray crystal structures of these enzymes both alone and in liganded complexes, along with associated enzymatic and biochemical studies. In this review, we will discuss what we have learned from the structures and related biochemistry of HATs and HDACs and the implications of these findings for the design of protein effectors to regulate gene expression and treat disease.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1210619