CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells

Chimeric antigen receptors (CAR) combine an antigen-binding domain with a CD3-zeta signaling motif to redirect T-cell specificity to clinically important targets. First-generation CAR, such as the CD19-specific CAR (designated CD19R), may fail to fully engage genetically modified T cells because act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2006-11, Vol.66 (22), p.10995-11004
Hauptverfasser: KOWOLIK, Claudia M, TOPP, Max S, GONZALEZ, Sergio, PFEIFFER, Timothy, OLIVARES, Simon, GONZALEZ, Nancy, SMITH, David D, FORMAN, Stephen J, JENSEN, Michael C, COOPER, Laurence J. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chimeric antigen receptors (CAR) combine an antigen-binding domain with a CD3-zeta signaling motif to redirect T-cell specificity to clinically important targets. First-generation CAR, such as the CD19-specific CAR (designated CD19R), may fail to fully engage genetically modified T cells because activation is initiated by antigen-dependent signaling through chimeric CD3-zeta, independent of costimulation through accessory molecules. We show that enforced expression of the full-length costimulatory molecule CD28 in CD8(+)CD19R(+)CD28(-) T cells can restore fully competent antigen-dependent T-cell activation upon binding CD19(+) targets expressing CD80/CD86. Thus, to provide costimulation to T cells through a CD19-specific CAR, independent of binding to CD80/CD86, we developed a second-generation CAR (designated CD19RCD28), which includes a modified chimeric CD28 signaling domain fused to chimeric CD3-zeta. CD19R(+) and CD19RCD28(+) CD8(+) T cells specifically lyse CD19(+) tumor cells. However, the CD19RCD28(+) CD8(+) T cells proliferate in absence of exogenous recombinant human interleukin-2, produce interleukin-2, propagate, and up-regulate antiapoptotic Bcl-X(L) after stimulation by CD19(+) tumor cells. For the first time, we show in vivo that adoptively transferred CD19RCD28(+) T cells show an improved persistence and antitumor effect compared with CD19R(+) T cells. These data imply that modifications to the CAR can result in improved therapeutic potential of CD19-specific T cells expressing this second-generation CAR.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-06-0160