Augmented Wnt Signaling in a Mammalian Model of Accelerated Aging

The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-08, Vol.317 (5839), p.803-806
Hauptverfasser: Liu, Hongjun, Fergusson, Maria M, Castilho, Rogerio M, Liu, Jie, Cao, Liu, Chen, Jichun, Malide, Daniela, Rovira, Ilsa I, Schimel, Daniel, Kuo, Calvin J, Gutkind, J. Silvio, Hwang, Paul M, Finkel, Toren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1143578