A Phenotypic Perspective on Mammalian Oxygen Sensor Candidates

:  Chronic hypoxic stimulation in mammals can induce several phenotypic changes, such as polycythemia, pulmonary vascular changes, pulmonary hypertension, and carotid body (CB) enlargement. These phenotypic alterations provide a tool to test whether an oxygen sensor candidate is involved in an organ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2006-08, Vol.1073 (1), p.221-233
1. Verfasser: BAYSAL, BORA E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung::  Chronic hypoxic stimulation in mammals can induce several phenotypic changes, such as polycythemia, pulmonary vascular changes, pulmonary hypertension, and carotid body (CB) enlargement. These phenotypic alterations provide a tool to test whether an oxygen sensor candidate is involved in an organism's response to environmental hypoxia. Here I evaluate the phenotypic evidence for several commonly considered oxygen sensor candidates. Germline mutations in NADPH oxidase, mitochondrial complexes I, III, IV, and heme oxygenase 2 genes cause different phenotypic consequences, suggesting distinct physiological roles rather than oxygen sensing. Germline mutations in VHL and HIF1 prolyl hydroxylase 2 genes cause polycythemia consistent with their role in oxygen homeostasis. However, it is unclear whether environmental variations affecting oxygen availability modify their phenotype, as would be expected from a defect in an oxygen sensor. Succinate dehydrogenase (SDH); mitochondrial complex II) germline mutations cause CB paragangliomas and there is evidence that the severity and the population genetics of paragangliomas may be influenced by altitude. Thus, from a phenotypic perspective, succinate dehydrogenase (SDH) appears to be a well‐supported oxygen sensor candidate. It is suggested that a universal oxygen sensor candidate must be supported by evidence from multiple layers of biological complexity.
ISSN:0077-8923
1749-6632
DOI:10.1196/annals.1353.024