Highly Potent Inhibitors of Methionine Aminopeptidase-2 Based on a 1,2,4-Triazole Pharmacophore
High-throughput screening for inhibitors of the human metalloprotease, methionine aminopeptidase-2 (MetAP2), identified a potent class of 3-anilino-5-benzylthio-1,2,4-triazole compounds. Efficient array and interative synthesis of triazoles led to rapid SAR development around the aniline, benzylthio...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2007-08, Vol.50 (16), p.3777-3785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-throughput screening for inhibitors of the human metalloprotease, methionine aminopeptidase-2 (MetAP2), identified a potent class of 3-anilino-5-benzylthio-1,2,4-triazole compounds. Efficient array and interative synthesis of triazoles led to rapid SAR development around the aniline, benzylthio, and triazole moeities. Evaluation of these analogs in a human MetAP2 enzyme assay led to the identification of several inhibitors with potencies in the 50−100 picomolar range. The deleterious effects on inhibitor potency by methylation of the anilino-triazole nitrogens, as well as the X-ray crystal structure of triazole 102 bound in the active site of MetAP2, confirm the key interactions between the triazole nitrogens, the active site cobalt atoms, and the His-231 side-chain. The structure has also provided a rationale for interpreting SAR within the triazole series. Key aniline (2-isopropylphenyl) and sulfur substituents (furanylmethyl) identified in the SAR studies led to the identification of potent inhibitors (103 and 104) of endothelial cell proliferation. Triazoles 103 and 104 also exhibited dose-dependent activity in an aortic ring tissue model of angiogenesis highlighting the potential utility of MetAP2 inhibitors as anticancer agents. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm061182w |