Water soluble quantum dot nanoclusters: energy migration in artifical materials

Energy migration in self-assembled, water soluble, quantum dot (QD) nanoclusters is reported. These spherical nanoclusters are composed of CdSe QDs bound together by pepsin, a digestive enzyme found in mammals. A structural model for the clusters is suggested, based on scanning transmission electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2006-01, Vol.8 (43), p.5079-5085
Hauptverfasser: Oh, Megan H J, Gentleman, Darcy J, Scholes, Gregory D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy migration in self-assembled, water soluble, quantum dot (QD) nanoclusters is reported. These spherical nanoclusters are composed of CdSe QDs bound together by pepsin, a digestive enzyme found in mammals. A structural model for the clusters is suggested, based on scanning transmission electron microscopy, as well as dynamic light scattering and small angle X-ray scattering. Cluster sizes range from 100 to 400 nm in diameter and show a close-packed interior structure. Optical characterization of the absorption and emission spectra of the clusters is reported, finding photoluminescence quantum yields of up to approximately 60% in water for clusters made from core-shell CdSe-ZnS QDs. Clusters prepared from two different size populations of CdSe QD samples (3 and 4 nm in diameter) demonstrate energy migration and trapping. Resonance energy transfer (RET), from small to large dots within the QD-pepsin cluster, is observed by monitoring the quenching of the small donor dot fluorescence along with enhancement of the large acceptor dot fluorescence.
ISSN:1463-9076
1463-9084
DOI:10.1039/b607124d