Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin Resistance

Dietary proteins and amino acids are important modulators of glucose metabolism and insulin sensitivity. Although high intake of dietary proteins has positive effects on energy homeostasis by inducing satiety and possibly increasing energy expenditure, it has detrimental effects on glucose homeostas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of nutrition 2007-01, Vol.27 (1), p.293-310
Hauptverfasser: Tremblay, Frédéric, Lavigne, Charles, Jacques, Hélène, Marette, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dietary proteins and amino acids are important modulators of glucose metabolism and insulin sensitivity. Although high intake of dietary proteins has positive effects on energy homeostasis by inducing satiety and possibly increasing energy expenditure, it has detrimental effects on glucose homeostasis by promoting insulin resistance and increasing gluconeogenesis. Varying the quality rather than the quantity of proteins has been shown to modulate insulin resistance induced by Western diets and has revealed that proteins derived from fish might have the most desirable effects on insulin sensitivity. In vitro and in vivo data also support an important role of amino acids in glucose homeostasis through modulation of insulin action on muscle glucose transport and hepatic glucose production, secretion of insulin and glucagon, as well as gene and protein expression in various tissues. Moreover, amino acid signaling is integrated by mammalian target of rapamycin, a nutrient sensor that operates a negative feedback loop toward insulin receptor substrate 1 signaling, promoting insulin resistance for glucose metabolism. This integration suggests that modulating dietary proteins and the flux of circulating amino acids generated by their consumption and digestion might underlie powerful new approaches to treat various metabolic diseases such as obesity and diabetes.
ISSN:0199-9885
1545-4312
DOI:10.1146/annurev.nutr.25.050304.092545