AT2-AT3-profiling: A new look at synonymous codon usage

The teleology of synonymous codon usage (SCU) still awaits a unifying concept. Here the 2nd codon letter of human mRNA-codons was graphically, aided by a computer program, put in relation to the 3rd codon letter, the carrier of SCU: AT2, the density of A+T in 2nd codon position, behaves to AT3, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2006-12, Vol.243 (3), p.308-321
1. Verfasser: Pluhar, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The teleology of synonymous codon usage (SCU) still awaits a unifying concept. Here the 2nd codon letter of human mRNA-codons was graphically, aided by a computer program, put in relation to the 3rd codon letter, the carrier of SCU: AT2, the density of A+T in 2nd codon position, behaves to AT3, the analogous density of the 3rd codon position, mostly in an inverse fashion that can be expressed as typical figures: mRNAs with an overall AT-density below 50% have a tendency to produce bulky figures called “red dragons” (when redness is attributed to graph-areas, where AT3< AT2), while mRNAs with an AT-density above 50% produce a pattern called “harlequin” consisting of alternating red and blue (blueness, in analogy, when AT3>AT2) diamonds. With more diversion of AT3 from AT2, the harlequin patterns can assume the pattern of a “blue dragon”. By analysing the mRNA of known proteins, these patterns can be correlated with certain functional regions: proteins with multiple transmembrane passages show bulky “red dragons”, structural proteins with a high glycine- and proline content such as collagen result in “blue dragons”. Non-coding mRNAs tend to show a balance between AT2 and AT3 and hence “harlequin patterns”. Signal peptides usually code red due to a low AT3 with an AT2-density at the expectance level. With this technique DNA-sequences of as yet unknown functional meaning were scanned. When stretches of harlequin patterns appear interrupted by red or blue dragons, closer scrutiny of these stretches can reveal ORFs which deserve to be looked at more closely for their protein-informational content. At least in humans, SCU appears to follow protein-dependent AT2-density in a reciprocal fashion and does not seem to serve the purpose of influencing mRNA secondary structure which is discussed in depth.
ISSN:0022-5193
1095-8541
DOI:10.1016/j.jtbi.2006.07.004