Comparison of optical and electrical mapping of fibrillation

Optical recordings with transmembrane potential (Vm)-sensitive fluorescent dye, or extracellular potential (Ve) recordings are used to map spatiotemporal patterns of cardiac excitation during ventricular fibrillation (VF). While the optical and electrical methods are accepted, there has not been a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2007-06, Vol.28 (6), p.707-719
Hauptverfasser: Himel, Herman D, Knisley, Stephen B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical recordings with transmembrane potential (Vm)-sensitive fluorescent dye, or extracellular potential (Ve) recordings are used to map spatiotemporal patterns of cardiac excitation during ventricular fibrillation (VF). While the optical and electrical methods are accepted, there has not been a test of whether they yield equivalent excitation times during VF. Times may differ since previous results indicate optical Vm interrogates deeper than Ve. We tested whether the steepest parts of the downward deflection of the Ve and upward deflection of optical Vm are synchronized during VF. We used simultaneous coepicentral optical and electrical mapping (32 spots, 4 kHz) with translucent indium tin oxide electrodes and a laser scanner on ventricular epicardium. VF was electrically induced in arterially-perfused rabbit hearts stained with di-4-ANEPPS. For both the optical and electrical deflections, maximum magnitudes of the slopes varied over a > 4 fold range, morphologies varied and spatiotemporal distributions were nonuniform. Time differences between the steepest parts of the optical and electrical deflections were typically a few ms. Standard deviations of time differences increased for the deflections that had the smaller slopes, which was only partly due to effects of recording noise as indicated by simulations. For deflections that had slopes ranging from the steepest found at each spot to 1/4 of the steepest, the optical deflections were on average 0.7-1 ms earlier than the Ve deflections. Thus, excitation times during VF measured optically and electrically differ. Considered together with our earlier results indicating that the optical Vm interrogates deeper than Ve, the results suggest that most fibrillatory excitations occur earlier in subsurface tissue than at the heart surface.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/28/6/009