Different impacts of intestinal lymphatic transport on the oral bioavailability of structurally similar synthetic lipophilic cannabinoids: Dexanabinol and PRS-211,220
The aim of this article was to investigate the role of intestinal lymphatic transport in the oral bioavailability of two structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220. For this purpose, the long chain triglyceride (LCT) solubility and affinity to chylomicrons ex...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutical sciences 2007-08, Vol.31 (5), p.298-305 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this article was to investigate the role of intestinal lymphatic transport in the oral bioavailability of two structurally similar synthetic lipophilic cannabinoids: dexanabinol and PRS-211,220. For this purpose, the long chain triglyceride (LCT) solubility and affinity to chylomicrons
ex vivo of both cannabinoids were evaluated. Their oral bioavailability was assessed in rats following administration in a lipid-free and a LCT-based formulation. The intestinal lymphatic transport of these two molecules was also directly measured in a freely moving rat model. LCT solubility of dexanabinol and PRS-211,220 was 7.9
±
0.2 and 95.8
±
5.3
mg/g, respectively. The uptake by chylomicrons was moderate (31.6
±
5.2%) and high (66.1
±
2.4%), respectively. The bioavailability of dexanabinol (37%) was not affected by LCT solution, whereas administration of PRS-211,220 in LCT improved the absolute oral bioavailability three-fold (from 13 to 35%) in comparison to the lipid-free formulation. The intestinal lymphatic transport of dexanabinol and PRS-211,220 was 7.5
±
0.8 and 60.7
±
6.8% of the absorbed dose, respectively. In conclusion, despite structural similarity and similar lipophilicity, dexanabinol and PRS-211,220 exhibited a very diverse pattern of oral absorption, and the lymphatic system played quite a different role in the oral bioavailability of these molecules. The low lymphatic transport of dexanabinol is likely driven by relatively lower affinity to chylomicrons and lower LCT solubility. |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2007.04.006 |