Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism

Cells are equipped with a number of transcriptional factors that safeguard against various environmental insults. Proteasomal protein degradation plays an important role in the Keap1-Nrf2 cytoprotection system, with molecular machinery similar to that for other environmental defense systems such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological chemistry 2006-10, Vol.387 (10/11), p.1311-1320
Hauptverfasser: Tong, Kit I., Kobayashi, Akira, Katsuoka, Fumiki, Yamamoto, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cells are equipped with a number of transcriptional factors that safeguard against various environmental insults. Proteasomal protein degradation plays an important role in the Keap1-Nrf2 cytoprotection system, with molecular machinery similar to that for other environmental defense systems such as inflammatory and hypoxic responses. While Nrf2 protein stabilization is known to be redox-sensitive, the transcription factors NF-κB and HIF-1α for inflammatory and hypoxic responses, respectively, are also influenced by the cellular redox conditions. In this review we present the recently proposed two-site substrate recognition model of the Keap1-Nrf2 system, which regulates the cellular responses against oxidative and xenobiotic stresses. The implications of two destructive motifs in Nrf2, the ETGE and DLG motifs, which appear to function as a hinge and latch attenuating Keap1 activity in different redox states, are discussed.
ISSN:1431-6730
1437-4315
DOI:10.1515/BC.2006.164