A Bayesian framework for global tractography

We readdress the diffusion tractography problem in a global and probabilistic manner. Instead of tracking through local orientations, we parameterise the connexions between brain regions at a global level, and then infer on global and local parameters simultaneously in a Bayesian framework. This app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2007-08, Vol.37 (1), p.116-129
Hauptverfasser: Jbabdi, S., Woolrich, M.W., Andersson, J.L.R., Behrens, T.E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We readdress the diffusion tractography problem in a global and probabilistic manner. Instead of tracking through local orientations, we parameterise the connexions between brain regions at a global level, and then infer on global and local parameters simultaneously in a Bayesian framework. This approach offers a number of important benefits. The global nature of the tractography reduces sensitivity to local noise and modelling errors. By constraining tractography to ensure a connexion is found, and then inferring on the exact location of the connexion, we increase the robustness of connectivity-based parcellations, allowing parcellations of connexions that were previously invisible to tractography. The Bayesian framework allows a direct comparison of the evidence for connecting and non-connecting models, to test whether the connexion is supported by the data. Crucially, by explicit parameterisation of the connexion between brain regions, we infer on a parameter that is shared with models of functional connectivity. This model is a first step toward the joint inference on functional and anatomical connectivity.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2007.04.039