Crossover from weak localization to Shubnikov-de Haas oscillations in a high-mobility 2D electron gas
We study the magnetoresistance deltarho(xx)(B)/rho(0) of a high-mobility 2D electron gas in the domain of magnetic fields B, intermediate between the weak localization and the Shubnikov-de Haas oscillations, where deltarho(xx)(B)/rho(0) is governed by the interaction effects. Assuming short-range im...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2008-03, Vol.100 (10), p.106806-106806, Article 106806 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the magnetoresistance deltarho(xx)(B)/rho(0) of a high-mobility 2D electron gas in the domain of magnetic fields B, intermediate between the weak localization and the Shubnikov-de Haas oscillations, where deltarho(xx)(B)/rho(0) is governed by the interaction effects. Assuming short-range impurity scattering, we demonstrate that in the second order in the interaction parameter lambda a linear B dependence, deltarho(xx)(B)/rho(0) approximately lambda(2)omega(c)/E(F) with a temperature-independent slope, emerges in this domain of B (here omega(c) and E(F) are the cyclotron frequency and the Fermi energy, respectively). Unlike previous mechanisms, the linear magnetoresistance is unrelated to the electron executing the full Larmour circle, but rather originates from the impurity scattering via the B dependence of the phase of the impurity-induced Friedel oscillations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.100.106806 |