Developmental modifications of olivocerebellar topography: The granuloprival cerebellum reveals multiple routes from the inferior olive

Correct function of neural circuits depends on highly organized neuronal connections, refined from less precise projections through synaptic elimination, collateral regression, or neuronal death. We examined regressive phenomena that define olivocerebellar topography during maturation from Purkinje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2005-09, Vol.490 (1), p.85-97
Hauptverfasser: Fournier, Betty, Lohof, Ann M., Bower, Adrian J., Mariani, Jean, Sherrard, Rachel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Correct function of neural circuits depends on highly organized neuronal connections, refined from less precise projections through synaptic elimination, collateral regression, or neuronal death. We examined regressive phenomena that define olivocerebellar topography during maturation from Purkinje cell polyinnervation to monoinnervation. We used bilateral retrograde tracing to determine the source of olivocerebellar afferents to posterior vermis lobules VII–VIII in a model of retained immature Purkinje cell polyinnervation, the granuloprival cerebellum. In controls, labelled neurons were found only in the contralateral inferior olive (ION) clustered in a small ventromedial locus that is congruent with known olivocerebellar topography. In granuloprival animals, olivary labelling appeared more dispersed and was present in homologous ipsilateral regions. Double‐labelled neurons were never seen. Retrograde tracing following unilateral olivocerebellar transection in adult granuloprival rats revealed: 1) the origin of the normal (remaining) path projecting through the contralateral inferior peduncle was more localized than in irradiated nonpedunculotomized rats, 2) a small double‐crossed path, and 3) a projection that ascends the peduncle ipsilateral to the ION of origin, part of which crosses the midline within the cerebellum. Electrophysiological and immunohistochemical assessment in the neonatal cerebellum revealed that transcommissural paths are not present during development but sprout within the irradiated cerebellum. Therefore, the olivocerebellar projection in the granuloprival rat, as a model of the immature path, shows parasagittal organization similar to that of controls in its normally crossed path but possesses additional abnormal projections. Thus, maturation of olivocerebellar topography involves removal of whole developmental paths to define laterality plus synapse elimination within largely predefined parasagittal zones. J. Comp. Neurol. 490:85–97, 2005. © 2005 Wiley‐Liss, Inc.
ISSN:0021-9967
0092-7317
1096-9861
1550-7130
DOI:10.1002/cne.20648