The trans-cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: Chromophore and protein dynamics

Transient infrared (IR) vibrational spectroscopy at subpicosecond time resolution on sensory rhodopsin II from Natronomonas pharaonis, NpSRII, has been performed for the first time. The experiments yield three time constants for the description of the primary photoinduced reaction dynamics, i.e. 0.5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2006-07, Vol.82 (4), p.358-362
Hauptverfasser: Diller, Rolf, Jakober, Ruth, Schumann, Christian, Peters, Frank, Klare, Johann P., Engelhard, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transient infrared (IR) vibrational spectroscopy at subpicosecond time resolution on sensory rhodopsin II from Natronomonas pharaonis, NpSRII, has been performed for the first time. The experiments yield three time constants for the description of the primary photoinduced reaction dynamics, i.e. 0.5, 3.7–4.4, and 11 ps. The data are consistent with a sequential reaction scheme, with the isomerization taking place within 0.5 ps, succeeded by an electronic ground state relaxation. The 11 ps component, observed at 1550 and 1530 cm−1, is attributed to dynamics of protein vibrational bands, possibly amide II bands of the protein backbone, perturbed by the ultrafast retinal photoisomerization. Similar observations, yet not as strongly expressed, have been made earlier in bacteriorhodopsin and halorhodopsin. © 2006 Wiley Periodicals, Inc. Biopolymers 82: 358–362, 2006 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.20475