Consequences of COP9 signalosome and 26S proteasome interaction

The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2005-08, Vol.272 (15), p.3909-3917
Hauptverfasser: Huang, Xiaohua, Hetfeld, Bettina K. J., Seifert, Ulrike, Kähne, Thilo, Kloetzel, Peter‐Michael, Naumann, Michael, Bech‐Otschir, Dawadschargal, Dubiel, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr‐Pad1‐N‐terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag‐CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull‐down experiments revealed the formation of an intact Flag‐CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull‐downs also precipitated cullins indicating the existence of super‐complexes consisting of the CSN, the 26S proteasome and cullin‐based Ub ligases. Permanent expression of a chimerical subunit (Flag‐CSN2‐Rpn6) consisting of the N‐terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag‐CSN2 overexpression was de‐novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c‐Jun in B8 cells. The possible role of super‐complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.
ISSN:1742-464X
1742-4658
DOI:10.1111/j.1742-4658.2005.04807.x