A Photoelectrochemical Device with a Nanostructured SnO2 Electrode Modified with Composite Clusters of Porphyrin-Modified Silica Nanoparticle and Fullerene
A silica nanoparticle has been successfully employed as a nanoscaffold to self-organize porphyrin and C60 molecules on a nanostructured SnO2 electrode. The quenching of the porphyrin excited singlet state on the silica nanoparticle is suppressed significantly, showing that silica nanoparticles are p...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-06, Vol.110 (23), p.11399-11405 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A silica nanoparticle has been successfully employed as a nanoscaffold to self-organize porphyrin and C60 molecules on a nanostructured SnO2 electrode. The quenching of the porphyrin excited singlet state on the silica nanoparticle is suppressed significantly, showing that silica nanoparticles are promising scaffolds for organizing photoactive molecules three-dimensionally in nanometer scale. Marked enhancement of the photocurrent generation was achieved in the present system compared with the reference system, where a gold core was employed as a scaffold of porphyrins instead of a silica nanoparticle. The rather small incident photon-to-current efficiency relative to a similar photoelectrochemical device using a silica microparticle may result from poor electron and hole mobility in the composite film due to poor connection between the composite clusters of a porphyrin-modified silica nanoparticle and C60 in micrometer scale. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp061524+ |