Measurement of the Streaming Potential and Streaming Current near a Rotating Disk to Determine Its Zeta Potential

Methodology for determining the zeta potential of a disk-shaped sample by both streaming potential and streaming current measurements is presented. Integration of Laplace's equation within one radius of the disk surface revealed that the streaming potential decreased strongly in the surface nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2005-08, Vol.21 (16), p.7433-7438
Hauptverfasser: Hoggard, James D, Sides, Paul J, Prieve, Dennis C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methodology for determining the zeta potential of a disk-shaped sample by both streaming potential and streaming current measurements is presented. Integration of Laplace's equation within one radius of the disk surface revealed that the streaming potential decreased strongly in the surface normal direction. With this solution, the zeta potential can be calculated from measurements of the streaming potential near the surface of the disk provided the position of the working electrode near the disk surface is known. Determining the zeta potential of a disk-shaped sample by means of streaming current measurements required determination of a current collection efficiency because not all the streaming current from a disk flows through the auxiliary electronic current path. While the working electrode near the disk should be pointlike, several possible variants on counter electrode shape and size were explored. Although the current collection efficiency was only a few percent in each case, the measured current was of 10 nA order. The current collection efficiency depended only on system geometry and was independent of a disk's zeta potential and solution concentration. Streaming current measurements of zeta potential on silicon wafers in potassium chloride solutions up to 10 mM agreed well with published values.
ISSN:0743-7463
1520-5827
DOI:10.1021/la050537w