Fabrication of Hydrophobic Surfaces by Coupling of Langmuir−Blodgett Deposition and a Self-Assembled Monolayer

A novel method coupling the Langmuir−Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-06, Vol.22 (13), p.5660-5665
Hauptverfasser: Tsai, Ping-Szu, Yang, Yu-Min, Lee, Yuh-Lang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel method coupling the Langmuir−Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surface energy, respectively. By controlling the hydrophobic−hydrophilic balance of the silica particle surface through the adsorption of surfactant molecules, deposition of monolayers consisting of hexagonally close-packed arrays of particles on a glass substrate can then be successfully conducted in a Langmuir trough. LB particulate films with a particle layer number up to 5 were thereby prepared. A sintered and hydrophobically finished particulate film with roughness factor of 1.9 was finally fabricated by sintering and surface silanization. Effects of particle size and particle layer number on the wetting behavior of the particulate films were systematically studied by measuring static and dynamic water contact angles. The experimental results revealed that a static contact angle of about 130° resulted from the particulate films regardless of the particle size and particle layer number. This is consistent with the predictions of both the Wenzel model and the Cassie and Baxter model in that roughness of a hydrophobic surface can increase its hydrophobicity and a switching of the dominant mode from Wenzel's to Cassie and Baxter's. In general, an advancing contact angle of about 150°, a receding contact angle of about 110°, and a contact angle hysteresis of about 40° were exhibited by the particulate films fabricated.
ISSN:0743-7463
1520-5827
DOI:10.1021/la053152m