Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy

In this work we monitor the bacterial growth of a Bacillus pumilus batch culture by means of UV resonance Raman spectroscopy. Excitation with a wavelength of 244 nm especially enhances the Raman scattering of the aromatic amino acids and the nucleic acid bases and therefore is a good method to track...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2006-07, Vol.82 (4), p.306-311
Hauptverfasser: Neugebauer, U., Schmid, U., Baumann, K., Holzgrabe, U., Ziebuhr, W., Kozitskaya, S., Kiefer, W., Schmitt, M., Popp, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we monitor the bacterial growth of a Bacillus pumilus batch culture by means of UV resonance Raman spectroscopy. Excitation with a wavelength of 244 nm especially enhances the Raman scattering of the aromatic amino acids and the nucleic acid bases and therefore is a good method to track the metabolic changes that occur during bacterial growth. Furthermore, a drug from the fluoroquinolone group is added to the bacterial suspension at the beginning of the exponential growth phase. With the help of chemometrical methods such as hierarchical cluster analysis (HCA) and principal component analysis (PCA) it is possible to visualize the small changes that occur in the UV resonance Raman spectra due to the interaction of the drug with its biological targets DNA and the enzyme gyrase within the bacterial cell. © 2006 Wiley Periodicals, Inc. Biopolymers 82: 306–311, 2006 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.20447