Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells

It has been implicated that reactive oxygen species (ROS) play important roles in modulating tumor progression. However, the mechanisms by which redox-regulated tumor progression are largely unknown. We previously demonstrated that reduced intracellular redox conditions could be achieved in stably t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical research 2005-04, Vol.39 (4), p.373-381
Hauptverfasser: Savaraj, Niramol, Wei, Yingjie, Unate, Hitoshi, Liu, Pei-Man, Wu, C.J., Wangpaichitr, Medhi, Xia, Diran, Xu, Hong-Ji, Hu, Shi-Xu, Tien Kuo, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been implicated that reactive oxygen species (ROS) play important roles in modulating tumor progression. However, the mechanisms by which redox-regulated tumor progression are largely unknown. We previously demonstrated that reduced intracellular redox conditions could be achieved in stably transfected small cell lung cancer cells with γ-glutamylcysteine synthetase (γ-GCSh) cDNA which encodes a rate-limiting enzyme in the biosynthesis of glutathione (GSH), a major physiological redox regulator. In the present study, using DNA microarray analyses, we compared the expression profiles between the γ-GCSh-transfected cells and their nontransfected counterpart. We observed downregulation of several matrix metalloproteinases (MMPs), i.e., MMP1 and MMP3, and MMP10 in the transfected cells. Dot blot and Northern blot hybridizations confirmed that, among the 18 MMP gene family members and four tissue inhibitors of matrix metalloprotein family (TIMP) analyzed, the expression levels of these three MMPs were consistently reduced. Transiently increased γ-GCSh expression using tetracycline-inducible γ-GCSh adenoviral expression system also showed down-regulation of MMP3 and MMP10, but not MMP1. Our results demonstrated that redox regulation of MMP1, MMP3 and MMP10 expression depend upon different modes of redox manipulation. These results bear implication that antioxidant modulation of antitumor progression may be contributed at least in part by the downregulation of a subset of metrix metalloproteins.
ISSN:1071-5762
1029-2470
DOI:10.1080/10715760400029694