World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays
We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2005-01, Vol.5 (8), p.845-850 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b503437j |