Inference in multiply sectioned Bayesian networks: methods and performance comparison

This paper extends lazy propagation for inference in single-agent Bayesian networks (BNs) to multiagent lazy inference in multiply sectioned BNs (MSBNs). Two methods are proposed using distinct runtime structures. It was proved that the new methods are exact and efficient when the domain structure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2006-06, Vol.36 (3), p.546-558
Hauptverfasser: Yang Xiang, Jensen, F.V., Xiaoyun Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper extends lazy propagation for inference in single-agent Bayesian networks (BNs) to multiagent lazy inference in multiply sectioned BNs (MSBNs). Two methods are proposed using distinct runtime structures. It was proved that the new methods are exact and efficient when the domain structure is sparse. Both improve space and time complexity more than the existing method, which allows multiagent probabilistic reasoning to be performed in much larger domains given the computational resource. The relative performances of the three methods are compared analytically and experimentally.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2005.861862