Inference in multiply sectioned Bayesian networks: methods and performance comparison
This paper extends lazy propagation for inference in single-agent Bayesian networks (BNs) to multiagent lazy inference in multiply sectioned BNs (MSBNs). Two methods are proposed using distinct runtime structures. It was proved that the new methods are exact and efficient when the domain structure i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2006-06, Vol.36 (3), p.546-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper extends lazy propagation for inference in single-agent Bayesian networks (BNs) to multiagent lazy inference in multiply sectioned BNs (MSBNs). Two methods are proposed using distinct runtime structures. It was proved that the new methods are exact and efficient when the domain structure is sparse. Both improve space and time complexity more than the existing method, which allows multiagent probabilistic reasoning to be performed in much larger domains given the computational resource. The relative performances of the three methods are compared analytically and experimentally. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2005.861862 |