Mouse Major Urinary Proteins Trigger Ovulation via the Vomeronasal Organ

The major urinary proteins are a species-specific complex of proteins excreted by male mice that influence the reproductive behavior and the neuroendocrine condition of female mice through the olfactory system. The aim of this work is to determine their influence on ovulation. The major urinary prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical senses 2006-06, Vol.31 (5), p.393-401
1. Verfasser: MORE, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The major urinary proteins are a species-specific complex of proteins excreted by male mice that influence the reproductive behavior and the neuroendocrine condition of female mice through the olfactory system. The aim of this work is to determine their influence on ovulation. The major urinary proteins isolated from the urine of adult male mice were voided of bound odorants, dissolved at a physiological concentration in urine of prepubertal mice, and put on the nostril of reproductively cycling female mice housed in groups, the first day of estrus at 1100. The eggs shed in the oviducts were counted under dissection the morning of the second day of estrus. The results showed that 1) a single stimulus of the major urinary proteins increased ovulation nearly as much as the whole urine of male mice, 2) the effect was not elicited by male rat urine which contains different proteins, 3) a peptide with four residues of the amino-terminal sequence of the major urinary proteins stimulated ovulation, and 4) mice that had been isolated or had the vomeronasal organ (VNO) removed did not respond to the major urinary proteins and had a high spontaneous ovulation. The results suggest that the major urinary proteins activate the neuroendocrine system through the VNO and trigger ovulation.
ISSN:0379-864X
1464-3553
DOI:10.1093/chemse/bjj043