Chemically Controlled Self-Assembly of Protein Nanorings

The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2006-06, Vol.128 (23), p.7630-7638
Hauptverfasser: Carlson, Jonathan C. T, Jena, Sidhartha S, Flenniken, Michelle, Chou, Tsui-fen, Siegel, Ronald A, Wagner, Carston R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction have yet to emerge. Consistent with theoretical models of polymer macrocyclization, we have demonstrated that, in the presence of dimeric methotrexate (bisMTX), wild-type Escherichia coli dihydrofolate reductase (DHFR) molecules tethered together by a flexible peptide linker (ecDHFR2) are capable of spontaneously forming highly stable cyclic structures with diameters ranging from 8 to 20 nm. The nanoring size is dependent on the length and composition of the peptide linker, on the affinity and conformational state of the dimerizer, and on induced protein−protein interactions. Delineation of these and other rules for the control of protein oligomer assembly by chemical induction provides an avenue to the future design of protein-based materials and nanostructures.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja060631e