Chemically Controlled Self-Assembly of Protein Nanorings
The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction ha...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-06, Vol.128 (23), p.7630-7638 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction have yet to emerge. Consistent with theoretical models of polymer macrocyclization, we have demonstrated that, in the presence of dimeric methotrexate (bisMTX), wild-type Escherichia coli dihydrofolate reductase (DHFR) molecules tethered together by a flexible peptide linker (ecDHFR2) are capable of spontaneously forming highly stable cyclic structures with diameters ranging from 8 to 20 nm. The nanoring size is dependent on the length and composition of the peptide linker, on the affinity and conformational state of the dimerizer, and on induced protein−protein interactions. Delineation of these and other rules for the control of protein oligomer assembly by chemical induction provides an avenue to the future design of protein-based materials and nanostructures. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja060631e |