Endothelins: Regulators of Extracellular Matrix Protein Production in Diabetes
Fibronectin (FN), a key extracellular matrix protein, is upregulated in target organs of diabetic angiopathy and in cultured cells exposed to high levels of glucose. FN has also been reported to undergo alternative splicing to produce the extra domain-B (ED-B) containing isoform, which is exclusivel...
Gespeichert in:
Veröffentlicht in: | Experimental biology and medicine (Maywood, N.J.) N.J.), 2006-06, Vol.231 (6), p.1022-1029 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fibronectin (FN), a key extracellular matrix protein, is upregulated in target organs of
diabetic angiopathy and in cultured cells exposed to high levels of glucose. FN has also
been reported to undergo alternative splicing to produce the extra domain-B (ED-B)
containing isoform, which is exclusively expressed during embryogenesis, tissue repair,
and tumoral angiogenesis. The present study was aimed at elucidating the role and
mechanism of endothelins (ETs) in FN and ED-B FN expression in diabetes. We investigated
vitreous samples for ED-B FN expression from patients undergoing vitrectomy for
proliferative diabetic retinopathy. Our results show increased FN and ED-B FN expression
in the vitreous of diabetic patients in association with augmented ET-1. Using an antibody
specific to the ED-B segment of FN, we show an increase in serum ED-B FN levels in
patients with diabetic retinopathy and nephropathy. We further examined retinal tissues,
as well as renal and cardiac tissues, from streptozotocin-induced diabetic rats. Diabetes
increased FN and ED-B FN in all three organs, which was prevented by ET antagonist
bosentan. To provide insight into the mechanism of glucose-induced and ET-mediated ED-B FN
upregulation, we assayed endothelial cells (ECs). Inhibition of mitogen-activated protein
kinase with pharmacological inhibitors and protein kinase B with dominant negative
transfections prevented glucose- and ET-1–mediated FN and ED-B FN expression. Furthermore,
treatment of cells exposed to high levels of glucose with ET antagonist prevented the
activation of all signaling pathways studied and normalized glucose-induced ED-B FN
expression. We then determined the functional significance of ED-B in ECs and show that
ED-B FN is involved in vascular endothelial growth factor expression and cellular
proliferation. These studies show that glucose-induced and ET-mediated FN and ED-B FN
expressions involve complex interplays between signaling pathways and that ET may
represent an ideal target for therapy in chronic diabetic complications. |
---|---|
ISSN: | 1535-3702 1535-3699 |
DOI: | 10.3181/00379727-231-2311022 |