Synthesis of (1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic Acid Vinyl-ACCA) Derivatives: Key Intermediates for the Preparation of Inhibitors of the Hepatitis C Virus NS3 Protease
(1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotyp...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2005-07, Vol.70 (15), p.5869-5879 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotype 1. We have developed a scalable process that delivers derivatives of this unusual amino acid in >99% ee. The strategy was based on the dialkylation of a glycine Schiff base using trans-1,4-dibromo-2-butene as an electrophile to produce racemic vinyl-ACCA, which was subsequently resolved using a readily available, inexpensive esterase enzyme (Alcalase 2.4L). Factors that affect diastereoselection in the initial dialkylation steps were examined and the conditions optimized to deliver the desired diastereomer selectively. Product inhibition, which was encountered during the enzymatic resolution step, initially resulted in prolonged cycle times. Enrichment of racemic vinyl-ACCA through a chemical resolution via diastereomeric salt formation or the use of forcing conditions in the enzymatic reaction both led to improvements in throughput and the development of a viable process. The chemistry described herein was scaled up to produce multikilogram quantities of this building block. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/jo050468q |