Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation
Choroid plexus (CP) produces the cerebrospinal fluid (CSF) of the central nervous system (CNS), but little is known about the mechanisms underlying development of this important tissue. CP forms in the hindbrain (4th ventricle), diencephalon (3rd ventricle) and dorsomedial telencephalon bilaterally...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2005-08, Vol.132 (15), p.3549-3559 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Choroid plexus (CP) produces the cerebrospinal fluid (CSF) of the central nervous system (CNS), but little is known about the mechanisms underlying development of this important tissue. CP forms in the hindbrain (4th ventricle), diencephalon (3rd ventricle) and dorsomedial telencephalon bilaterally (lateral ventricles). All of these sites lie at or near the embryonic dorsal midline (DM), which acts as a CNS patterning center. We therefore examined DM-CP relationships using normal and Gdf7 (Bmp12) transgenic embryos to fate map or ablate DM cells. These studies revealed a Gdf7 fate map that includes most CP epithelial (CPe) cells of the hindbrain and diencephalon. In the telencephalon, Gdf7 cell lineages were found in the small anterior domain of telencephalic CPe (tCPe), but its large posterior domain was devoid of these lineages. Anterior and posterior tCPe domains, which arise within a contiguous field separate from diencephalic CPe, also exhibited different patterns of apoptosis. Despite lacking Gdf7 cell lineages, the posterior tCPe domain failed to form after ablating Gdf7-expressing DM cells at neural tube stages. The tCPe loss was associated with abrogation of high-level bone morphogenetic protein (Bmp) signaling, which is known to be required for tCPe induction. Taken together, these studies demonstrate intimate DM-CPe relationships throughout the CNS and highlight two distinct tCPe domains, including a posterior domain whose genesis depends on DM cells in a non-cell-autonomous fashion. |
---|---|
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.01915 |