The Relevance of QEEG to the Evaluation of Behavioral Disorders and Pharmacological Interventions

It has become apparent that the electrical signals recorded from the scalp of healthy individuals under standardized conditions are predictable, and that patients with a wide variety of brain disorders display activity with unusual features. It also early became apparent that centrally active medica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical EEG and neuroscience 2006-04, Vol.37 (2), p.135-143
Hauptverfasser: John, E. Roy, Prichep, Leslie S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has become apparent that the electrical signals recorded from the scalp of healthy individuals under standardized conditions are predictable, and that patients with a wide variety of brain disorders display activity with unusual features. It also early became apparent that centrally active medications produced striking changes in this activity. The application of computerized signal analysis to EEG recordings collected using standardized procedures has made it possible to obtain quantitative descriptions of brain electrical activity (QEEG) in normal individuals and patients with disorders of brain function or structure, as well as quantitative description of the ways in which centrally active medications alter this activity (Pharmaco-EEG or “PEEG”). With the emergence of three-dimensional EEG source localization techniques, it has recently become possible to visualize the mathematically most probable generators of QEEG abnormalities within the brain as well as the neuroanatomical regions where abnormal activity is most altered by efficacious medication. As QEEG and PEEG have evolved, a vast body of facts has been accumulated, describing changes in the EEG or event-related potentials (ERPs) observed in a variety of brain disorders or after administration of a variety of medications. With some notable exceptions, these studies have tended to be phenomenological rather than analytic. There has not been a systematic attempt to integrate these phenomena in order to build better understanding of how the abnormal behaviors of a particular psychiatric patient might be related to the specific pattern of the deviant electrical activity, nor just how pharmacological reduction of that deviant activity may have resulted in more normal behavior. This article is an endeavor to provide a more specific theoretical framework for understanding the relationships between the neuroanatomy and neurochemistry of the homeostatic system underlying the regulation of the QEEG, and the mechanisms revealed by Pharmaco-EEG that aid in correcting these illnesses.
ISSN:1550-0594
2169-5202
DOI:10.1177/155005940603700210