Differential activity patterns in the masseter muscle under simulated clenching and grinding forces
summary The aim of this study was to investigate (i) whether the masseter muscle shows differential activation under experimental conditions which simulate force generation during clenching and grinding activities; and (ii) whether there are (a) preferentially active muscle regions or (b) force dir...
Gespeichert in:
Veröffentlicht in: | Journal of oral rehabilitation 2005-08, Vol.32 (8), p.552-563 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | summary The aim of this study was to investigate (i) whether the masseter muscle shows differential activation under experimental conditions which simulate force generation during clenching and grinding activities; and (ii) whether there are (a) preferentially active muscle regions or (b) force directions which show enhanced muscle activation. To answer these questions, the electromyographic (EMG) activity of the right masseter muscle was recorded with five intramuscular electrodes placed in two deep muscle areas and in three surface regions. Intraoral force transfer and force measurement were achieved by a central bearing pin device equipped with three strain gauges (SG). The activity distribution in the muscle was recorded in four different mandibular positions (central, left, right, anterior). In each position, maximum voluntary contraction (MVC) was exerted in vertical, posterior, anterior, medial and lateral directions. The investigated muscle regions showed different amount of EMG activity. The relative intensity of the activation, with respect to other regions, changed depending on the task. In other words, the muscle regions demonstrated heterogeneous changes of the EMG pattern for the various motor tasks. The resultant force vectors demonstrated similar amounts in all horizontal bite directions. Protrusive force directions revealed the highest relative activation of the masseter muscle. The posterior deep muscle region seemed to be the most active compartment during the different motor tasks. The results indicate a heterogeneous activation of the masseter muscle under test conditions simulating force generation during clenching and grinding. Protrusively directed bite forces were accompanied by the highest activation in the muscle, with the posterior deep region as the most active area. |
---|---|
ISSN: | 0305-182X 1365-2842 |
DOI: | 10.1111/j.1365-2842.2005.01466.x |